1 /*
2 * Copyright (C) 2010 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.collect;
18
19 import com.google.caliper.AfterExperiment;
20 import com.google.caliper.BeforeExperiment;
21 import com.google.caliper.Benchmark;
22 import com.google.caliper.Param;
23 import com.google.common.base.Function;
24 import com.google.common.collect.MapMaker;
25 import com.google.common.primitives.Ints;
26
27 import java.util.Map;
28 import java.util.Random;
29 import java.util.concurrent.atomic.AtomicLong;
30
31 /**
32 * Simple single-threaded benchmark for a computing map with maximum size.
33 *
34 * @author Charles Fry
35 */
36 public class MapMakerSingleThreadBenchmark {
37 @Param({"1000", "2000"}) int maximumSize;
38 @Param("5000") int distinctKeys;
39 @Param("4") int segments;
40
41 // 1 means uniform likelihood of keys; higher means some keys are more popular
42 // tweak this to control hit rate
43 @Param("2.5") double concentration;
44
45 Random random = new Random();
46
47 Map<Integer, Integer> cache;
48
49 int max;
50
51 static AtomicLong requests = new AtomicLong(0);
52 static AtomicLong misses = new AtomicLong(0);
53
54 @BeforeExperiment void setUp() {
55 // random integers will be generated in this range, then raised to the
56 // power of (1/concentration) and floor()ed
57 max = Ints.checkedCast((long) Math.pow(distinctKeys, concentration));
58
59 cache = new MapMaker()
60 .concurrencyLevel(segments)
61 .maximumSize(maximumSize)
62 .makeComputingMap(
63 new Function<Integer, Integer>() {
64 @Override public Integer apply(Integer from) {
65 return (int) misses.incrementAndGet();
66 }
67 });
68
69 // To start, fill up the cache.
70 // Each miss both increments the counter and causes the map to grow by one,
71 // so until evictions begin, the size of the map is the greatest return
72 // value seen so far
73 while (cache.get(nextRandomKey()) < maximumSize) {}
74
75 requests.set(0);
76 misses.set(0);
77 }
78
79 @Benchmark int time(int reps) {
80 int dummy = 0;
81 for (int i = 0; i < reps; i++) {
82 dummy += cache.get(nextRandomKey());
83 }
84 requests.addAndGet(reps);
85 return dummy;
86 }
87
88 private int nextRandomKey() {
89 int a = random.nextInt(max);
90
91 /*
92 * For example, if concentration=2.0, the following takes the square root of
93 * the uniformly-distributed random integer, then truncates any fractional
94 * part, so higher integers would appear (in this case linearly) more often
95 * than lower ones.
96 */
97 return (int) Math.pow(a, 1.0 / concentration);
98 }
99
100 @AfterExperiment void tearDown() {
101 double req = requests.get();
102 double hit = req - misses.get();
103
104 // Currently, this is going into /dev/null, but I'll fix that
105 System.out.println("hit rate: " + hit / req);
106 }
107
108 // for proper distributions later:
109 // import JSci.maths.statistics.ProbabilityDistribution;
110 // int key = (int) dist.inverse(random.nextDouble());
111 }